ADAPTIVE WEB DESIGN

JavaScript, start with a baseline of semantic, usable markup
and baseline styles. Then instruct the script to make necessary
HTML and CSS changes required by the new interface once it
has determined that it can run without encountering errors.

For an example of this in action, let’s return to the Retreats 4
Geeks page.

Figure 4.4: The Retreats 4 Geeks web page.

I wanted to make the best possible use of space on a mobile
device. The horizontal navigation will work on a small browser,
but the target areas would be too small to click easil).r. of
course, I could switch the site to use vertical navigation,
allowing for larger links, but that would take up precious
screen real estate.

An alternative to these two approaches is creating a dropdown
using either CSS or a select element. While the pure CSS
dropdown option is tempting, the latter approach has an edge
because it provides users with a familiar user interface. For that
reason, I chose the select route.

Based on the markup introduced back in Chapter 2, I'll walk
you through creating a script that converts the contents of the

PROGRESSIVE ENHANCEMENT WITH JAVASCRIPT 86

nav element into a select when the browser shrinks below
a particular size. To keep the example short and a little easier
to follow, I've used the jQuery JavaScript library.® Libraries are
great tools as they are composed of dozens if not hundreds
of functions that solve common problems (like adding and
removing classes). Don't worry if you can’t completely follow
the code, I'll explain what's happening so you don't have to
decipher it on your own.

We'll begin by isolating the script in an anonymous function®®
that runs as soon as the DOM is available, but before assets
like images, CSS files, and videos have been downloaded
(ak.a. onDOMReady). This makes the page more responsive
than running a script when the window loads (a.k.a. window.
onload). For the remainder of this example, all of the code will
be sequestered within this function:

$(functionO{
/1 Exciting stuff will go here
N

Next, we create the variables we need for this script to work.
By instantiating them all at once, we'll reduce the number of
var statements (which helps with minification).!*

var
$window = $(window), // reference the window
$old_nav = $(‘#top nav > *'), // get the navigation
$links = $old_nav.find(‘a'), // get the links

showing = 'old’, /1 track what's showing
trigger = 765, // the browser width

/1 that triggers the change
// we'll use these shortly
// we'll need a timer too

$new_nav, $option,
timer = null;

©

http://jQuery.com

10. Anonymous functions are functions which have not been given
aname,

http://www.alistapart.com/articles/javascript-minification-
part-11/

ADAPTIVE WEB DESIGN

The comments should give you a good sense of what each
variable is for.

If you're familiar with jQuery, but confused as to why
we're assigning elements to local variables rather than just
referencing the jQuery-based lookup (e.g., $('#top nav

> #")) each time we need it, rest assured that there’s a
method to my madness: creating a local reference reduces
the performance hit of running the script because the look
up only happens once instead of every time $ () is used.
Also, to make it easy to differentiate jQuery results from
other variables, I've prefaced each associated variable name
with a dollar sign (). You'll see these techniques used
throughout this script as they are helpful habits to get into.

With all of our variables in place, you might think we could
move on to the meat of the script, but we're not quite ready for
that yet. Before we try to execute code against the page, we
should make sure that the elements we need actually exist:

if ($old_nav.length && $links.length) {
// We know the DOM elements we need exist
// and can do something with them

}

Testing for dependencies is very important and is something
I'll cover more thoroughly in the next section. Now for the
meat (or nutmeat if you're a vegetarian). We'll begin our script
in earnest by generating the new select-based navigation,
creating the select, and the first of several option elements
it will contain:

$new_nav = $('<select></select>");
$option = $(‘<option>-- Navigation --</option>")
.appendTo($new_nav);

With new markup to work with, we can now loop through
the links we collected (as $Links) and build a new option for
each by repeatedly cloning the option we just created:

PROGRESSIVE ENHANCEMENT WITH JAVASCRIPT

$links.each(function(){

var $a = $(this);
$option.clone()

.attr('value’, $a.attr(‘href'))
.text($a.text())

.appendTo($new_nav);
b

With the options created and appended to the select we
can move on to adding the final markup touches and setting
up the event handler for the select’s onchange event:

$new_nav = $new_nav
-wrap(‘<div id="mobile-nav"/>")
.parent()
.delegate('select’, ‘change’, function(){
))window.tocation = $(this).val();

This is a slightly simplified version of what you'll find on the
live Retreats 4 Geeks site (I've taken out some of the URL hash
trickery), but I wanted to make sure you were able to follow it
without distraction. Here’s what's going on: the first three lines
wrap our select ($new_nav) ina div and then re-assign
that div to the variable $new_nav so the whole thing is
viewed by JavaScript as a neat little package; the next line uses
event delegation (which we discussed eatlier) to observe the
onchange event on the select from further up the DOM tree
(from the div, in fact), assigning an anonymous function to
that event that pushes a new location to the browser’s address
bar (causing the browser to jump to the new section or load a
new page, depending on the link type).

Boom! Functional select-based navigation. Now to get it
into the page when conditions are right. For that, we'll create
a new function, called toggleDisplay, that will observe
the size of the browser window and handle swapping one
navigation style for another:

88

ADAPTIVE WEB DESIGN

function toggledisplay) {
var width = $window.width();
if (showing == ‘old’ && width <= trigger) {
So\d»nav.repLacewith(Snewinav);
showing = '‘new’;
} else if (showing new' && width > trigger) {
$nEw#nav.repLaceNith(SOldknav):
showing = 'old";
¥
}

Again, thisisa slightly simplified version of the final script, but
it highlights the important part: the navigation is only swapped
in the event that the appropriate browser width threshold

is met (trigger) and the other navigation style is showing
(tracked using showing). With that function in place, we just
need to run it once (to initialize everything and make sure the
right navigation is showing from the get-go) and then assign
it to the window’s onresize event:

toggleDisplay(); // initialize the right view
$window.resize(functionO{

if (timer) { clearTimeout(timer); }

timer = setTimeout(toggleDisplay, 100):
b

If you're wondering why toggleDisplay isn’'t passed
in as the actual event handler, that’s because doing

so would cause the function to be executed numerous
times (possibly several hundred) while a user is resizing
his or her browser. To keep the number of executions

to a minimum (and reduce the burden the script places
on a user’s CPU), the event handler uses a timer to call
toggleDisplayO) after .1 seconds. As the function is
triggered repeatedly during a resize event, it destroys the
timer if it exists and then recreates it. This setup ensures
toggleDisplay() is only called once when a user resizes
his or her browser (unless he or she does so very slowly).

PROGRESSIVE ENHANCEMENT WITH JAVASCRIPT

And there you have it: a perfect example of progressive
enhancement with JavaScript.

_iComer 71205 M =

Join us for
HTMLS & CSS3

81000t 201 Gotiobory, T

Figure 4.5: select-based navigation on an iPhone.

As this simple example demonstrates, JavaScript is
perfectly capable of generating everything it needs and
getting rid of anything it doesn't. You could even take this
particular function a step farther and make it even more
markup agnostic by allowing the root starting point (in our
case, the child elements of nav) to be passed dynamically
into the function. But I leave that to you to experiment
with. Onward!

KEEP IT COPACETIC

As we've covered, many of the progressive enhancement
techniques available to us in HTML and CSS are pretty
straightforward and may even have been part of your
repertoire prior to picking up this book. Progressive
enhancement with JavaScript, on the other hand, is a bit
more complicated; JavaScript cannot be fault tolerant like
the others because it is a programming language.

90

	img003
	img004
	img005

